Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase
نویسندگان
چکیده
BACKGROUND Yeasts tolerant to toxic inhibitors from steam-pretreated lignocellulose with xylose co-fermentation capability represent an appealing approach for 2nd generation ethanol production. Whereas rational engineering, mutagenesis and evolutionary engineering are established techniques for either improved xylose utilisation or enhancing yeast tolerance, this report focuses on the simultaneous enhancement of these attributes through mutagenesis and evolutionary engineering of Saccharomyces cerevisiae harbouring xylose isomerase in anoxic chemostat culture using non-detoxified pretreatment liquor from triticale straw. RESULTS Following ethyl methanesulfonate (EMS) mutagenesis, Saccharomyces cerevisiae strain D5A⁺ (ATCC 200062 strain platform), harbouring the xylose isomerase (XI) gene for pentose co-fermentation was grown in anoxic chemostat culture for 100 generations at a dilution rate of 0.10 h⁻¹ in a medium consisting of 60% (v/v) non-detoxified hydrolysate liquor from steam-pretreated triticale straw, supplemented with 20 g/L xylose as carbon source. In semi-aerobic batch cultures in the same medium, the isolated strain D5A(+H) exhibited a slightly lower maximum specific growth rate (μ(max) = 0.12 ± 0.01 h⁻¹) than strain TMB3400, with no ethanol production observed by the latter strain. Strain D5A(+H) also exhibited a shorter lag phase (4 h vs. 30 h) and complete removal of HMF, furfural and acetic acid from the fermentation broth within 24 h, reaching an ethanol concentration of 1.54 g/L at a yield (Y(p/s)) of 0.06 g/g xylose and a specific productivity of 2.08 g/gh. Evolutionary engineering profoundly affected the yeast metabolism, given that parental strain D5A+ exhibited an oxidative metabolism on xylose prior to strain development. CONCLUSIONS Physiological adaptations confirm improvements in the resistance to and conversion of inhibitors from pretreatment liquor with simultaneous enhancement of xylose to ethanol fermentation. These data support the sequential application of random mutagenesis followed by continuous culture under simultaneous selective pressure from inhibitors and xylose as primary carbon source.
منابع مشابه
Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields
BACKGROUND Efficient xylose fermentation by yeast would improve the economical and sustainable nature of biofuels production from lignocellulosic biomass. However, the efficiency of xylose fermentation by the yeast Saccharomyces cerevisiae is suboptimal, especially in conversion yield, despite decades of research. Here, we present an improved performance of S. cerevisiae in xylose fermentation ...
متن کاملExpression of a bacterial xylose isomerase in an industrial strain of Saccharomyces cerevisiae
Background The use of lignocellulosic biomass rather than fossil fuel is an environmental sustainable alternative for bioethanol production. However, fermentation of lignocellulosic hydrolysates by Saccharomyces cerevisiae is not viable since this yeast cannot ferment xylose naturally. Current, several studies are being developed to introduce a pathway that allows pentose fermentation by S. cer...
متن کاملImproved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method
BACKGROUND Xylose is the second most abundant carbohydrate in the lignocellulosic biomass hydrolysate. The fermentation of xylose is essential for the bioconversion of lignocelluloses to fuels and chemicals. However the wild-type strains of Saccharomyces cerevisiae are unable to utilize xylose. Many efforts have been made to construct recombinant yeast strains to enhance xylose fermentation ove...
متن کاملEvolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass
BACKGROUND One of the crucial factors for a sustainable and economical production of lignocellulosic based bioethanol is the availability of a robust fermenting microorganism with high tolerance to inhibitors generated during the pretreatment of lignocellulosic raw materials, since these inhibitors are known to severely hinder growth and fermentation. RESULTS A long-term adaptation in repetit...
متن کاملDevelopment of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component.
Metabolic engineering of Saccharomyces cerevisiae for ethanol production from D-xylose, an abundant sugar in plant biomass hydrolysates, has been pursued vigorously for the past 15 years. Whereas wild-type S. cerevisiae cannot ferment D-xylose, the keto-isomer D-xylulose can be metabolised slowly. Conversion of D-xylose into D-xylulose is therefore crucial in metabolic engineering of xylose fer...
متن کامل